项目: 1、 国家自然科学基金青年项目:磷酸根离子对α-Fe2O3表面负静电场强度以及形貌调控规律研究,编号21503147(2016.1-2018.12)21万 主持; 2、 国家自然科学基金面上项目:.纳米块结构的氧化铁薄膜制备、表面修饰及光解水性能研究,编号:21576215(2016.1-2019.12) 77万,第三 3、 天津市教委人才计划项目:天津市特聘教授青年学者:50万2018.7-2023.7, 主持 4、 天津市"131"创新型人才培养工程(第三层次人才项目)3万:2015.1-2016.12,主持 5、 新加坡经济发展局船舶与海洋工程基金(Naval Architecture and Marine Engineering Professorships Grant),批准号:M060050022,(2013.1-2015.12)参与。 文章: 1. Liu, Xiangyun; Wang, Hongyan*; Qiu, Wenlong; Wu, Quanping; Xue, Song*. Dentritic hemaitite thin films with ferrous lactate overlayers for efficient photoelectrochemical water splitting. Solar Energy 2022, 231, 897-907. 2. Li, Wenwen; Wang Hongyan*; Sun Zhe; Wu, Quanping; Xue, Song*. Si-doped Cu2O/SiOx composites for efficient photoelectrochemical water reduction. href="https://www.sciencedirect.com/science/journal/03787753" title="Go to Journal of Power Sources on ScienceDirect" Journal of Power Sources 2021, 492, 229667. 3. Wu, Pengyuan; Wang, Hongyan*; Li, Yan; Xue, Song; Wu, Quanping*. Understanding the role of uniformly coated carbon overlayers in hematite nanorod photoandes. Solar Energy 2020, 208, 728-737. 4. Zhang, Qi; Wu, Quan-ping*; Zhang, Yue; Yan, Ji-tong; Xue, Song; Wang, Hong-yan*. A facile surface passivation of hematite photoanodes with molybdate overlayers for efficient water oxidation. Chinese Journal of Chemical Physics 2018, 31, 833-842. 5. Zhang, Qi; Wang, Hongyan*; Dong, Yixin; Yan, Jitong; Ke, Xuebin; Wu, Quanping; Xue, Song*. In situ growth of ultrathin Co-MOF nanosheets on alpha-Fe2O3 hematite nanorods for efficient photoelectrochemical water oxidation. Solar Energy 2018, 171, 388-396. 6. Zhang, Qi; Wang, Hongyan*; Dong, Yixin; Wu, Quanping ; Xue, Song*. Highly efficient hematite films via mid-/ex-situ Sn-doping for photoelectrochemical water oxidation. International Journal of Hydrogen Energy 2017, 42, 16012–16022. 7. Zhang, Chuangli; Wu, Quanping*; Ke, Xuebin; Ren, Yajun; Xue, Song; Wang, Hongyan*. Elaboration and characterization of nanoplate structured alpha-Fe2O3 films by Ag3PO4. Solar Energy 2016, 135, 274-283. 8. Wang, Min; Wang, Hongyan*; Wu, Quanping; Zhang, Chuangli; Xue, Song*. Morphology regulation and surface modification of hematite nanorods by aging in phosphate solutions for efficient PEC water splitting. International Journal of Hydrogen Energy 2016,41, 6211-6219. 9. Kan Liu, Hongyan Wang*, Quanping Wu, Jun Zhao, Zhe Sun, Song Xue,* Nanocube-based hematite photoanode produced in the presence of Na2HPO4 for efficient solar water splitting , Journal of Power Sources, 2015, Volume 283, 1, Pages 381–388 IF:6.94 10. Wu, Quanping; Zhao, Jun; Liu, Kan Wang Hongyan*, Sun Zhe, Li Ping; Xue Song*, Ultrathin hematite film for photoelectrochemical water splitting enhanced with reducing graphene oxide, International Journal of Hydrogen Energy, 2015,40(21): 6763-6770 11. Hong Yan Wang, Aik Chong Lua*,Methane decomposition using Ni–Cu alloy nano-particle catalysts and catalyst deactivation studies, 2015,Chemical Engineering Journal, Volume 262, 15, Pages 1077-1089 12. Lua Aik Chong; Wang Hong Yan*,Hydrogen production by catalytic decomposition of methane over Ni-Cu-Co alloy particles, Applied catalysis B- Environmental, 2014,卷: 156 页: 84-93 13. Wang, Hong Yan; Lua, Aik Chong*,Deactivation and kinetic studies of unsupported Ni and Ni-Co-Cu alloy catalysts used for hydrogen production by methane decomposition. Chemical Engineering Journal, 2014 卷: 243 页: 79-91 14. Lua, Aik Chong* ,Wang Hong Yan,Decomposition of methane over unsupported porous nickel and alloy catalyst,Applied Catalysis B-Enviromental,2013, 卷: 132 页: 469-478 15. Wang, Hong Yan; Lua, Aik Chong* ,Hydrogen Production by Thermocatalytic Methane Decomposition ,Heat Transfer Engineering ,2013,34(11-12): 896-90 16. Wang, Hong Yan; Lua, Aik Chong*,Development of Metallic Nickel Nanoparticle Catalyst for the Decomposition of Methane into Hydrogen and Carbon Nanofibers ,Journal of Physical Chemistry C (116): 2012:26765-26775 17. Wang Hong Yan, Lua, Aik Chong*, Hydrogen production by thermo-catalytic methane decomposition, Proceedings of Innovative Materials for Processes in Energy Systems, Singapore , 2010, 11.19-12.1 pp 107- 113 |